(x^2-7x+12)=(4x-5)

Simple and best practice solution for (x^2-7x+12)=(4x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-7x+12)=(4x-5) equation:



(x^2-7x+12)=(4x-5)
We move all terms to the left:
(x^2-7x+12)-((4x-5))=0
We get rid of parentheses
x^2-7x-((4x-5))+12=0
We calculate terms in parentheses: -((4x-5)), so:
(4x-5)
We get rid of parentheses
4x-5
Back to the equation:
-(4x-5)
We get rid of parentheses
x^2-7x-4x+5+12=0
We add all the numbers together, and all the variables
x^2-11x+17=0
a = 1; b = -11; c = +17;
Δ = b2-4ac
Δ = -112-4·1·17
Δ = 53
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{53}}{2*1}=\frac{11-\sqrt{53}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{53}}{2*1}=\frac{11+\sqrt{53}}{2} $

See similar equations:

| 3x-x+2x=10-3+5 | | 2x-x+4=2 | | d+10/11=-15 | | 3/8n-20=-7 | | 4(p+6)=12 | | 2/3+k=9 | | x/4=8/17 | | -18-4x+2x=9 | | X=4y+19 | | 0=t^2-7t+49/4 | | p=1-(.4) | | 30x+75=180 | | 4+z=-6-5z-2 | | 4x-21=75 | | x^2−2x+10=0 | | 5x^2+1=2x+13 | | 2x+21=6x+10 | | x/3-8=-9 | | -59-7p=-8(2p-2)+-6p | | 14+4y=16 | | 9k^2+12k-23=0 | | 9k^2+12k−23=0 | | 5-2p=6 | | 30x=42x | | -0.04x-35=0 | | 5/3=5k | | 12/3=5k | | 16^{6x}=16^{x+3} | | -9-7(3p-5)=93-4 | | 3x^2+1=25 | | -7+u/3=-28 | | 1/2h(10+7)=153 |

Equations solver categories